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Figure 1. SimSiam architecture. Two augmented views of one
image are processed by the same encoder network f (a backbone
plus a projection MLP). Then a prediction MLP h is applied on one
side, and a stop-gradient operation is applied on the other side. The

Algorithm 3 Consistency Training (CT)

Input: dataset D, initial
rate 7, step schedule N (
p(-), d(,-), and A(:)

- —Bandk 0
repeat

model parameter @, learning

-), EMA decay rate schedule

Sample x ~ D, and n ~ U1, N(k) — 1]

Sample z ~ N (0, I)
L£(0,07) «
Altn)d(fo(x + tny1

Zytn1), fo- (X + tn2z, t,)

9 — 0 —1Vol(0,67)
0~ < stopgrad(u(k)0~ + (1 — pu(k))@)

k—k+1

model maximizes the similarity between both sides. It uses neither

negative pairs nor a momentum encoder. until convergence
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Representations as Signatures of Mem./Gen.

How do the previous result take effect in the representation spaces:
Memorization Generalization

* Model learns overly strong/specific neurons e Low-dimensional projection of a Gaussian

* High std, spiky representations e Lower std; information-rich representations
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Figure 4: Verification of Corollary 3.2 and Corollary 3.3. We visualize the learned encoder matrix Repyem = (0.0,1.0, ..., 0.0, 0.0) %f
W; of a ReLU DAE trained with noise level ¢ = 0.2. When trained on 5 CelebA face images, the _ "
model stores training samples in its columns, matching Corollary 3.2. When trained on 10,000 im- d = 0,4x‘+0.2xﬁ+...+00x! +0'1XB <* L1 1L L 1Lt s
= o J
RePgen, =(0.4,0.2, ...,0.0,0.1) 3 = - - = e
Latent Dimension (p = 100)

ages, the model generalizes and captures data statistics, consistent with Corollary 3.3. Empirically,
the same behavior holds for larger noise, up to o = 5; additional results are in Appendix A.1.

[1] Understanding Representation Dynamics of Diffusion Models via Low-Dimensional Modeling
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[2] Generalization of Diffusion Models Arises with a Balanced Representation Space
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Figure 1: Representation Autoencoder (RAE) uses frozen pretrained representations as the encoder
with a lightweight decoder to reconstruct input images without compression. RAE enables faster
convergence and higher-quality samples in latent diffusion training compared to VAE-based models.
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[3] Reconstruction vs. Generation: Taming Optimization Dilemma in Latent Diffusion Models
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Figure 1: ImageNet results with expert specific VAE and small latent 2-/layer Sofimax-type network.

[7] Multi-Subspace Multi-Modal Modeling for Diffusion Models: Estimation, Convergence and

Mixture of Experts
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Figure 1. Concept of the self-refining video sampling. Within
the same noise level, the video latent z; is refined as the predicted
endpoint 2; is pulled toward the data manifold.
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