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Paradigm of Multi-step Diffusion Models
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Overview

• The Relationship between Diffusion Models and SSL
• How to use Data Structure to improve Performance 

• Alignment with SSL representation in the latent space 
• Using Manifold structure
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Mathematical Framework of Diffusion Models
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It is clear that the training of diffusion model do 
not involve label information.  



Consistency Distillation Objective Function[1]
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• Goal: Use a NN 𝑓𝜽 𝑌,, 𝑡 to approximate 1-step 
mapping function 𝑓
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[1] SDCS, Consistency Models, ICML 2023.
[2] Momentum Contrast for Unsupervised Visual Representation Learning (MoCo). Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, 
Ross Girshick

SSL MoCo Model



Diffusion Models can Play role of SSL Representation
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[1] Understanding Representation Dynamics of Diffusion Models via Low-Dimensional Modeling

• Diffusion model with great generalization property has unimodal 
dynamic for representation.

• Otherwise, suffers from a monotonically decreasing curve



Diffusion Models can Play role of SSL Representation
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[1] Generalization of Diffusion Models Arises with a Balanced Representation Space

• Diffusion model with great generalization property Trends to 
learn a balanced property (similar to SSL methods)

• Otherwise, spiky representation



Overview

• The Relationship between Diffusion Models and SSL
• How to use Data Structure to improve Performance 

• Alignment with SSL representation in the latent space 
• Using Manifold structure

8



Alignment with SSL representation in the latent space 
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• Diffusion Models can Play the role of SSL Representation
• But not good enough compared with SSL method with large-size data
• Align with pretrained SSL models:
• VAE level: VAVAE
• Latent level: REPA and RAE



VAVAE: Constraint VAE Latent with Representation

10

• Due to the lack of semantic information constraints, VAEs struggle to 
achieve a balance between reconstruction and generation.

[1] Reconstruction vs. Generation: Taming Optimization Dilemma in Latent Diffusion Models



Constraint Latent Diffusion with Representation
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[1] REPRESENTATION ALIGNMENT FOR GENERATION:DIFFUSION TRANSFORMERSIS EASIER THAN YOU THINK
[2] DIFFUSION TRANSFORMERSWITH REPRESENTATION AUTOENCODERS

• Diffusion models tends to learn data representation
• (a) We directly align SSL with diffusion representation 

(REPA)
• Direct use SSL model as Encoder (RAE)



Guidance Inference with SSL Physical Information
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[1] Inference-time Physics Alignment of Video Generative Models with Latent World Models
[2] V-JEPA 2: Self-Supervised Video Models Enable Understanding, Prediction and Planning

• Due to the predict property, V-JEPA2 has physical information
• Use this information as reward guidance to enhance physical



Overview

• The Relationship between Diffusion Models and SSL
• How to use Data Structure to improve Performance 

• Alignment with SSL representation in the latent space 
• Using Manifold structure by predict clean samples
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Predict Low-dim image instead of noise
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[1] Back to Basics: Let Denoising Generative Models Denoise (JiT)

• As the image has low dimension structure, directly predict image is easier 
compared to predict full space noise 



Predict and perturb video to correct sample
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[1] Self-Refining Video Sampling. 20260126.

• By predict clean samples to localize the sample to the manifold



Future work
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• Current manifold learning mainly from intuition 
• Can we model a more realistic manifold assumption?
• Can we use the manifold or data structure in the GRPO post training 

phase? 



Future work
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• Current manifold learning mainly from intuition 
• Can we model a more realistic manifold assumption?
• Can we use the manifold or data structure in the GRPO post training 

phase? 


