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Paradigm of Multi-step Diffusion Models
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Overview

* The Relationship between Diffusion Models and SSL

e How to use Data Structure to improve Performance

* Alignment with SSL representation in the latent space
 Using Manifold structure



Mathematical Framework of Diffusion Models
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Consistency Distillation Objective Function

* Goal: Use a NN fu(Y;, t) to approximate 1-step
contrastive loss
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Diffusion Models can Play role of SSL Representation
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* Diffusion model with great generalization property has unimodal

dynamic for representation.

e Otherwise, suffers from a monotonically decreasing curve



Diffusion Models can Play role of SSL Representation

Representations as Signatures of Mem./Gen.
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Figure 4: Verification of Corollary 3.2 and Corollary 3.3. We visualize the learned encoder matrix 5,
W; of a ReLU DAE trained with noise level o = 0.2. When trained on 5 CelebA face images, the - g"
model stores training samples in its columns, matching Corollary 3.2. When trained on 10,000 im- d B 0'4xa+0‘2xﬁ+‘“+O'OXEH)'HB <
RePge, = (0.4,0.2, ...,0.0,0.1) o ST = L.

ages, the model generalizes and captures data statistics, consistent with Corollary 3.3. Empirically,
the same behavior holds for larger noise, up to o = 5; additional results are in Appendix A.1.

Latent Dlrnensu:m (p=100)

 Diffusion model with great generalization property Trends to

learn a balanced property (similar to SSL methods)

e Otherwise, spiky representation



Overview

 The Relationship between Diffusion Models and SSL

e How to use Data Structure to improve Performance

* Alignment with SSL representation in the latent space
 Using Manifold structure



Alignment with SSL representation in the latent space

* Diffusion Models can Play the role of SSL Representation
* But not good enough compared with SSL method with large-size data

* Align with pretrained SSL models:
* VAE level: VAVAE
 Latent level: REPA and RAE



VAVAE: Constraint VAE Latent with Representation

* Due to the lack of semantic information constraints, VAEs struggle to
achieve a balance between reconstruction and generation.
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Figure 3. The proposed Vision foundation model Aligned VAE
(VA-VAE). Vision foundation models are used to guide the train-
ing of high-dimensional visual tokenizers, effectively mitigating
the optimization dilemma and improve generation performance.
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Constraint Latent Diffusion with Representation

° D|ffus|on models tends to |earn data representation P”j“—.—c.mm —-—CIFAW‘TW: P e M P = ;

* (a) We directly align SSL with diffusion representation

(REPA)

* Direct use SSL model as Encoder (RAE)
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Figure 1: Representation Autoencoder (RAE) uses frozen pretrained representations as the encoder
with a lightweight decoder to reconstruct input images without compression. RAE enables faster
convergence and higher-quality samples in latent diffusion training compared to VAE-based models.
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Guidance Inference with SSL Physical Information

* Due to the predict property, V-JEPA2 has physical information

* Use this information as reward guidance to enhance physical

V-JEPA 2

V-JEPA 2-AC
predictor - = >
4
Rob
actions
& p
frozen frozen
encoder ~ enco der
P b
e e,
|| ik ¥ § .
Cli -

S
|

A

Generated Video \
g F ame Index k C k k + M
= : Prediction Context : Prediction Future :
o 1 1 1
'E 1 1 1
g 1 1 1
g : ; N
(g 1 1 !
S | 1 1
:; . l s - 1 /
y VJEPA Surprlse ICD \
EQL VJEPA Encoder Eg VJEPA Encoder ‘
J A £
Inference-time X j
Alignment -
P¢( VJEPA Predictor
. ) v
: Masking [x[x]] >mim.

12



Overview

 The Relationship between Diffusion Models and SSL

e How to use Data Structure to improve Performance
 Alignment with SSL representation in the latent space
* Using Manifold structure by predict clean samples
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Predict Low-dim image instead of noise

* As the image has low dimension structure, directly predict image is easier
compared to oredict full space noise
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Predict and perturb video to correct sample

* By predict clean samples to localize the sample to the manifold
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Figure 1. Concept of the self-refining video sampling. Within
the same noise level, the video latent z; is refined as the predicted
endpoint 2 is pulled toward the data manifold.

[1] Self-Refining Video Sampling. 20260126.



Future work

* Current manifold learning mainly from intuition
e Can we model a more realistic manifold assumption?

e Can we use the manifold or data structure in the GRPO post training
phase?
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